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BOTTOM LINE

! Valuable radioisotopes – such as tritium, He-3, Mo-99, and Np-237

! could be produced and separated most efficiently and profitably

>> in a single, 
>> small, 
>> fluid thorium or uranium fuel, 
>> liquid-salt-cooled  reactor (LSR) 
>> most likely situated on a government reservation
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SCOPE OF PRESENTATION

! Survey of current and changing status

! For such valuable byproducts, specifically:

>> utilization,
>> supply, 
>> shortages,
>> and production options

! Ralph Moir and I gave a longer, more technical version of this presentation

>> yesterday
>> at Argonne National Laboratory
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RADIOISOTOPE PRODUCTION AND APPLICATIONS

!  Some radioisotopes indispensable 

>> for applications in medicine, industrial research, nuclear weapons,
national security, and outer space

!  Special considerations

>> their rarity,
>> production cost, 
>> and handling requirements

! Radioisotopes are valuable commodities on the open market

4



MOLYBDENUM-99 RADIOISOTOPE

! The most common medical radioisotope
 

>> technetium-99
>> half-life 6 hours (short, medically-efficient lifetime)

!  ~ 30 million medical procedures per year

>> accounting for 80% of all nuclear diagnostic procedures worldwide.

! Derived from 

>> molybdenum-99 nuclear-reactor fission product
>> half-life 66 hours (manageable lifetime for production and shipment)
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PRODUCTION OF RADIOISOTOPES

!Almost all diagnostic and therapeutic radioisotopes

! Produced in nuclear reactors, 

>> mostly being byproducts of the fission process
 >> either in reactor fuel 

>> or in specifically designed targets
>> that contain fissile materials

! Nuclear accelerators have a small specialized role
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NUCLEAR-WEAPON TRITIUM REQUIREMENTS 

! Require tritium 

>> that must be replenished
>>  after an unknown fraction — perhaps half —
>> of tritium having decayed with its 12.3 year half-life

 

! In addition, 

>> research and development
>> of controlled fusion calls for considerable tritium
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HELIUM-3

! The decay product of tritium is the very rare gas helium-3

>> Supply dependent on recovery from nuclear weapons
>> (Not the same issue as shortage in conventional helium gas)

! Helium-3 especially useful now in neutron detectors,

>> especially those deployed for homeland security throughout the world
 

! Also important basic research applications
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Plutonium-238

! The heavy non-fissile radioisotope plutonium-238 

>> produced from neptunium-237 in high-power reactors, 
>> ideal for thermoelectric generators, 

especially for long missions in outer space
>> not usable for nuclear explosives

! In U.S. national-security and non-proliferation restrictions 

>> for radioisotopes tritium, helium-3, and Plutonium-238
>> require government control and processing
>> in government facilities
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NATIONAL-SECURITY AND NON-PROLIFERATION 
CONSTRAINTS 

! Radioisotopes tritium, helium-3, and plutonium-238 

>> require government control and processing
>> in government facilities
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SHORTFALLS
 IN MEDICAL-RADIOISOTOPE PRODUCTION

! Ongoing and emerging shortfalls

>> in supplies of valuable radioisotopes
>> recognized by various international and national commissions

!At present, there are no major producers in the United States

>> of molybdenum-99 for medical use
>> for medical use in the United States

! Most of current molybdenum-99 world production

>> by inefficient irradiation of solid targets
>> low-enriched uranium 
>> in research and test reactors
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LONGER-TERM RADIOISOTOPE SHORTFALLS

! In the distant future: 

>> additional demand likely from thermonuclear fusion breeders
>>  require a large tritium inventory for startup.

! Near term:

> United States and the surrounding world
> far more viable applications than forthcoming supply
> for these and some other rare radioisotopes.
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PROPOSED LIQUID-SALT REACTOR
 FOR RADIOISOTOPE PRODUCTION

! Small nuclear reactor proposed

>> to supply specialized radioisotopes
>> in a timely, cost-effective, and secure manner

! Mixed liquid-salt combination of fuel and coolant.

>> reactor could be quite similar in many respects
>> to circulating molten-salt reactors
>> developed at Oak Ridge National Laboratory

! Mutually constructive role

>> liquid-salt reactor
>> small, modular
>> fissile/fertile fuel adaptable
>> conservative design parameters
>> abundant radioisotope production
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GOVERNMENT SITING OF FACILITY

! To meet near-term requirements

! New, dedicated facility

>> in a remote area
>> on a government reservation
>> with state-of-the-art safety and security features

! Government siting recommended

>> for timeliness and national security
>> more rapid licensing of reactor
>> lower cost because of reduced construction delay
>> non-government organizations supportive
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ABOUT MOLTEN-SALT REACTORS

! Basically simple, reliable nuclear reactor

>> can function at low, near-atmospheric pressures
>> reduced mechanical stress endured by the system
>> simplified reactor design, improved safety

! Oak Ridge researched liquid-fueled and cooled reactors up through the 1960s

>> included uranium-233 and thorium
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MOLTEN-SALT BREEDER REACTOR EXPERIMENT

! Oak Ridge work culminated with the Molten-Salt Reactor Experiment

>> 7.4 Megawatt (thermal) test reactor
>> started operation in 1965
>> operated safely and reliably
>> maintained without excessive difficulty. 
>> one-fluid reactor
>> four-year experiment,  about 1.5 years of full-power operation.

! Simulated basic neutronic characteristics 

>> epithermal liquid-fluoride thorium breeder reactor. 

! Primarily two fuels: 

>> first uranium-235
>> later uranium-233 bred from thorium in other reactors
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Figure 1. Schematic diagram of a molten-salt reactor based on 1960's experiment at Oak Ridge.

SCHEMATIC OF MSRE
HEAT-CIRCULATION AND CHEMICAL-PROCESSING 
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KEY FEATURES OF MSRE

! Graphite moderator

! Continuous circulation of molten salt

! Online, continuous chemical processing

>> gaseous and solid fission products
>> other extraneous coolant-transported materials 

! Solid control/safety rods

! Additional safety with a drain plug 

>> kept solid by actively freezing plug
>> provides passive safety system 
>> in case of electric-supply failure or overheating
>> would melt and drain solution into “nuclear-safe” geometries
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FLIBE

! A fluid solution used as a coolant and carrier

>> FLIBE = FLuorine - LIthium - BEryllium 
>> chemically compatible mixture
>> of liquid salts

! Oak Ridge MSREreactor combined primary coolant and fuel

>> FLIBE and uranium

! MSRE secondary coolant was FLIBE

>> provides very good, reactor-compatible properties 

! FLIBE lithium content needed for tritium production

! FLIBE acts as solvent and carrier for tritium and fission products

>> for on-line, continuous chemical extraction
>> optimum efficiency for high yield production
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AIRCRAFT REACTOR EXPERIMENT

! First molten-salt reactor

>> at Oak Ridge in early, mid-1950s
>> 2.5 MW(th) 
>> military experiment designed to attain a high power density
>> for use as an engine in a nuclear-powered bomber 

! Used molten-fluoride salt in core zone

>> and liquid sodium as a secondary coolant

! Operated successfully and sufficiently for a 1000-hour cycle in 1954 
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FEATURES OF NEW PROPOSAL
 FOR PRODUCTION OF VALUABLE RADIOISOTOPES

! A single solution-type reactor

>> specializing in radioactive-materials production
>> short-lifetime fission products, extracted in as brief a time as possible

! Tritium production in FLIBE

! Yield of other commercial radioisotopes

>> should effectively ease the forthcoming shortfall
>> at reduced cost of valuable medical radioisotopes

!  Np-237 can be extracted too

>> to make valuable Plutonium-238 used for thermoelectric generators
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ESTIMATING COMMERCIAL VALUE

! rough estimates of the annual commercial value and government savings
 

>> 70% capacity factor
>> 100MW(thermal)

! From tritium production of about 210g/yr 

>> valued at $40,000/g
>> offsets significant portion of current federal tritium budget outlay
>> cost significantly less than current government production

! Molydenum-99:  50 g/yr

>> At 0.5MCi/g, this would correspond to 340 MCi/yr
>> Assuming a 1% extraction yield in processing
>>  at a price of $200/Ci (for a 6-day Curie),

! Tritium extraction (and He-3 accumulation) simultaneous with Mo-99
production

>> respective product yields fully independent of each other
>> government budget outlays significant

! Additional market value for heat and power produced 
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SUMMARY OF PRODUCTION EXPECTATIONS

! Tritium production for U.S. government

~210g/yr º ~$8.4M/yr

!  molybdenum-99 6-day-Curie fission-product market value

~50g/yr º ~$140M/yr

! Marketable power

~100MWth º ~$12M/yr

! Estimates necessarily have large uncertainties

>> product-yield
>> market-value

! No monetary credit assumed for helium-3 production
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LICENSING AND SITING ISSUES

! Reactor licensing 

>> known to be a financial and procedural show-stopper
>> for nuclear reactors
>> especially in the United States
>> and especially for non-traditional concepts.

! No applications for solution-reactor facilities in isotope production

>> known to have been submitted for approval in United States 

! Nuclear regulatory bodies have not developed regulations

>> to facilitate solution reactors for commercial isotope production

! The two such  reactors previously described were licensed

>> by the U.S. Atomic Energy Commission
>> but not as isotope-production facilities
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EXPEDITED LICENSING POTENTIAL

! Expedited licensing might be achievable

>> national-security priority in production of tritium
>> homeland-security considerations in production of He-3

! Might reduce construction costs and delays significantly

>> by siting on a government reservation
>> especially Oak Ridge or Savannah River
>> compared to an equivalent publically-sited plant
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INHERENT-JUSTIFICATION POTENTIAL

! Proposed liquid-fueled/liquid-cooled reactor 

>> appears to amply and quickly pay for itself
>> provide near-term economic and national value
>> more than enough to motivate government and commercial initiative
>> especially in the United States

! Reactor could be fueled with uranium, thorium, and/or plutonium

>> would satisfy multiple goals and professional interests
>> including more efficient burnup, less byproduct waste 
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DEVELOPMENT WORK REQUIRED

! Government and/or commercial development work needed 

! Optimize production and separation

>> fission products, tritium, helium-3, and neptunium-237
>> financially self-supporting
>> providing  public service national-security value
>> meet or exceed current national requirements for full cost-recovery

! Computations needed: 

>> design-specific radiation-transport/nuclear-production

! Even if sited on a government reservation

>> licensing issues will again need to be addressed,
>> deserve to be expedited as much as possible
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SOME POINTS OF EMPHASIS

Here are some takeaway points of emphasis:

! NNSA and DOE

>> paying high cost for production
>> of tritium and helium-3

! Shortfall emerging in special radioisotope production

>> medical diagnostics and treatment
>> industrial research.

!  Current medical-isotope production methods insufficient

>> production reactors around the world are aging
>> new reactors discouraged by proliferation concerns

! Small liquid-fueled reactor

>> could produce all the tritium
>> help resolve the  medical-radioisotope availability
>> proven, extremely safe design
>> national-security and non-proliferation benefits

!  Only one small specialized reactor needed
>> located at U.S. government site is needed
>> could be built and operated by private industry
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MORE POINTS TO EMPHASIZE

! Government facilities have had significant role

>> Oak Ridge National Laboratory reactor-development experience
>> Savannah River National Laboratory existing tritium processing 

! Reactor products should readily compensate for the investment

>> tritium yield reduces federal government costs
>> rare radioisotopes sold commercially
>> steam, heat, electricity fungible byproduct

! Siting on a government reservation expedites/resolves

>> availability of the reactor
>> and its important radioisotope products
>> siting, licensing, and non-proliferation problems
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ADDITIONAL RELEVANT FACTORS

!  At 100MWth, the reactor can be small, possibly modular

!  Liquid-fueled reactors very efficient 

>> in their use of low-enriched uranium as fuel
>> can consume natural uranium or thorium
>> fuel continuously recycled
>> good neutronic features

! Liquid-salt coolant/carrier

>> continuous circulation
>> enables very efficient on-line radioisotope extraction
>> allows removal of reactor poisons such as xenon

! Fluid fuels compared to solid fuels

>> much less radiation damage and thermal stress 
>> consumed fuel replaced on-line during operation

! Operational features 
>> atmospheric pressure
>> comparatively thin containment vessels
>> liquid fuel is continuously circulated
>> heat transferred at high temperature

! Enhanced safety characteristics are intrinsic to design
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MORE POINTS OF EMPHASIS

! Very safe reactor concept

>> liquid solution safely expands as temperature increases
>> reactivity control is intrinsic to design
>> passive safety valve from a solid meltable salt plug 

! Concept indifferent to type of fuel 

>> versatile fuel cycle
>> any combination of uranium, thorium, or plutonium 

! Not a proliferation issue

>> especially if sited on a government reservation
>> especially if high-enriched uranium not needed
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SUMMARY

The molten-salt reactor of this concept:

! Fueled with thorium or uranium

! Would appear to produce timely and sufficient radioisotopes

! To meet or exceed current national requirements

! At the very least on a full cost-recovery basis, more likely at a profit

! With a potential commercial market product value

>> of many billions of dollars per year
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APPENDIX

ABSTRACT

Uranium-Thorium Liquid-Salt Reactor for Producing Valuable
Radioisotopes

Alexander DeVolpi (retired, Argonne National Laboratory)
 and 

Ralph Moir (retired, Lawrence Livermore National Laboratory)

Valuable and indispensable radioisotopes – such as tritium, helium-3, molybdenum-99, and
neptunium-237 – could be produced, separated, and extracted most efficiently and economically in
a single, small liquid-salt reactor optimally situated on a government reservation.

Various international and national commissions have recognized looming shortfalls in some
radioisotopes designated as essential. At present, nearly 80% of all nuclear-medicine procedures
worldwide are derived from radioactive molybdenum-99, but there are no major producers in the
United States. Much of the world’s medical-isotope production is inefficiently carried out by
irradiating uranium targets in aging specialized solid-fuel reactors. Production of tritium and helium-
3 for national-security purposes has becomes increasingly expensive.

Much better sustained radioisotope production could be obtained from a liquid-salt reactor, an
enterprising approach satisfying near-term high-priority goals for valuable and rare radioactive
substances. One such small 100MWth reactor should suffice to meet domestic requirements for
tritium, as well as international needs for medical radioisotopes, with a commercially profitable near-
term return on investment.

The proposed reactor would be similar to the circulating molten-salt reactor originally developed at
Oak Ridge National Laboratory. The isotope-production reactor’s primary coolant would consist of
F/Li/Be compounds that provide very good and relevant reactor-compatible properties, functioning
with near-atmospheric pressure, reduced mechanical stress, simplified reactor design, and inherently
safe operation. Mixed and circulated with the coolant would be criticality-sustaining fuel that could
function with any of several fissile and fertile material combinations, primarily uranium and thorium.

Under typically constrained domestic circumstances — wherein national or commercial reactor
funding, development, and construction options are limited — this particular concept offers near-
term benefits while avoiding most shortcomings. Because of national-security considerations, the
proposed liquid-salt radioisotope-production reactor likely would have to be federally endorsed,
prioritized, and located on a government reservation.
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