Aim High!

Thorium energy cheaper than from coal.

Walk away safe.

robert.hargraves@gmail.com

Global environmental problems mount.

Prosperity stabilizes population.

Prosperity stabilizes population.

Prosperity depends on energy.

Energy and coal use is growing rapidly in developing nations.

We need energy cheaper than from coal.

A supernova made the elements of the periodic table.

Uranium-238 neutron absorption makes fissionable plutonium-239.

nucleons	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95
241						
240						
239			A -	-	> = = = = = = = = = = = = = = = = = = =	
238						EMZ EMZ
237						fission
236						
235						beta decay
234						
233						1
232						neutron absorption

Thorium-232 neutron absorption makes fissionable uranium-233.

nucleons	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95
241						
240						
239						
238						EMZ EMZ
237						fission
236						
235						beta decay
234						
233	_	> -	→ ¾			1
232						neutron absorption

A Liquid Fluoride Thorium Reactor (LFTR) makes thorium into uranium.

Start up LFTR by priming it with a fissile fuel.

- The US government has 500 kg of U-233.
- Prime with U-235, or Pu from spent LWR fuel.

The two-fluid LFTR is one of several molten salt reactor designs.

A single fluid thorium reactor makes U-233 within the fissioning core.

Denatured thorium molten salt reactor needs both Th-232 and U-235 feeds.

A uranium molten salt reactor fissions its U-235 and some Pu-239.

Fuji molten salt reactors import uranium from a central Th-232/U-233 factory.

A fluoride-salt cooled reactor contains fission products within 3 ceramic layers, in pebbles.

LFTR fuel is dissolved in liquid.

Key technology -- liquid fuel form!

Molten fluoride salt mix: LiF and BeF₂

Excellent heat transfer

Continuous chemical processing

Atmospheric pressure

Room temp solid

Thorium fuel is compact and inexpensive.

440,000 tons in US: USGS

\$300,000 per ton

500 tons, entire US, 1 year

1 ton, 1 city, 1 year

← dense, silvery, ½ m,
1 ton thorium sphere

LFTR produces < 1% of the long-lived radiotoxic waste of today's reactors.

LFTR is walk-away safe.

Stable reactivity.

Fuel already melted.

Atmospheric pressure.

Melting freeze plug dumps salt to tank.

Freeze plug **Drain Tank**

Salt from rupture or leak will solidify.

Radiation, fission products, and heat damage solid fuel.

Zirconium cladding must contain fuel and fission products for centuries.

Weinberg and Oak Ridge developed the first molten salt nuclear reactor in 1954.

The *Fireball* reactor made heat to power jet engines.

Rickover's drive, Nautilus submarine, and Shippingport power plant →100 US PWRs.

The Molten Salt Reactor Experiment ran from 1965 to 1969.

Salt flowed through channels in this graphite core.

The Molten Salt Reactor **Experiment** succeeded.

> **Hastelloy** Xe off-gas **Graphite Pumps Fluorination Dump tanks U-233** 17,655 hours

Why can LFTR energy be cheaper than from coal?

The median of five cost estimates for molten salt reactors is < \$2/watt.

Estimate	Year	\$/watt	2009 \$/watt
Sargent & Lundy	1962	0.650	4.64
Sargent & Lundy ORNL TM- 1060	1965	0.148	1.01
ORNL-3996	1966	0.243	1.62
Engel et al, ORNL TM7207	1978	0.653	2.16
Moir	2000	1.580	1.98

LFTR needs no costly 160-atmosphere pressure vessel and containment dome.

The Westinghouse AP-1000 is massively larger than LFTR.

AP-1000 Samen, China

Compact closed cycle Brayton turbine raises power conversion efficiency.

Halving rejected heat enables air cooling.

LFTR can undersell coal.

LFTR can undersell coal.

Develop a small modular reactor.

Small LFTR modules can be transported by trucks.

100 megawatt, \$200 million

-- cheaper than coal

Affordable to developing nations

Single modules

- -- suited for small cities
- -- short transmission lines

Multi-module power stations

- -- incremental growth and cost
- -- replace plants at existing sites

Boeing makes one \$200 million aircraft per day.

The learning curve reduces costs.

One-a-day production of 100 MW LFTRs can be a \$70 billion industry.

Check global warming.

Install one 100 MW LFTR each day, worldwide, to replace all coal power.

← 1400 GWY 10 billion tons CO₂ **Annual emissions** from world coal power plants

2020

Synthesize fuel from H₂.

Dissociate water with sulfur-iodine or copper-chlorine cycle.

Ammonia

CO2 + 3 H2 → CH3OH + H2O

Methanol for gasoline

Dimethyl ether for diesel

Aim High! Cut US oil imports.

Dissociate H2 and synthesize fuel

(@ 50% x 50% efficiency).

200 MWth LFTR and plant makes 250,000 bbl/year.

(@ one a day)

2032

Cut 10 billion tons/year CO₂ emissions to zero by 2058. Avoid carbon taxes.

Improve world prosperity, and check overpopulation.
Reduce radiotoxic waste; consume world fissile stocks.
Use inexhaustible thorium fuel, available in all nations.
Walk-away safe.

By-product <u>U-232's</u> decay chain emits gamma rays hazardous to bomb builders.

nucleons	Th 90	Pa 91	U 92	Np 93	↓
235					neutron abs/decay
234					(n,2n)
233	^	> -	->		→
232		V _	→ •		beta decay
231	V _	→ 'l'			1
230					neutron absorption

Uranium from a commercial LFTR will not be used for weapons.

India, Pakistan, and North Korea demonstrated far less technically challenging and costly paths.

Breeds only as much U-233 as it consumes.

Removing any will stop the LFTR.

U-232 contamination will be 0.13%.

A 5 kg sphere of it radiates 4,200 mrem/hr at 1 meter.

After 72 hours of exposure a weapons worker will likely die.

Renewable energy wrecks the environment, says one scientist.

Jesse E. Ausubel

- Director, Program for the Human Environment, Rockefeller University.
- Program Director, Alfred P Sloan Foundation.
- Former Director of Studies, Carnegie Commission on Science, Technology, and Government.

Flooding the entire province of Ontario behind a 60 m dam would provide 80% of the power of Canada's existing nuclear electric plants.

Displacing a single nuclear power plant with biomass would require 1,000 square miles of prime lowa farm land.

Wind farms on 300 square miles of land could displace a 1 GW nuclear plant.

60 square miles of photovoltaic cells could generate 1 GW.

Powering New York City would require a wind farm the size of Connecticut.

Nuclear power was kindest to the human environment in 1969-1996.

Energy Chain	Accidents with > 4 fatalities	Fatalities	Fatalities per GW-year
Coal	185	8,100	0.35
Oil	330	14,000	0.38
Natural Gas	85	1,500	0.08
LPG	75	2,500	2.9
Hydro	10	5,100	0.9
Nuclear	1	28	0.0085

Spent fuel still contains 97% of its potential energy.

Aim High! Mine < 1% of the ore; bury < 1% of the waste.

http://wwf