LFTR Development Lessons Learned

Thorium Conference
May 12, 2011
Dr. Joe Bonometti

Quick Recap

- LFTR is an architecture class not a specific design
- Technologist's salient points:
 - Power density
 - Smaller & less massive, less losses, mobility, eases of manufacture, higher temperatures...
 - Efficiency
 - Less waste heat, better thermodynamics, useful byproducts...
- General public salient points:
 - Inherent safety
 - Reduced operator errors, less inventory to contaminate, easy of shutdown and startup...
 - Economical
 - Lower utility bills, less waste to store, fits into existing grid & future electric cars, abundant and stable domestic supply...

Education

- "101" Class for every new team member, for senior leadership, etc.
- Classic first slide fits almost all technologies:
 - "But the critics said these couldn't be done!"
 - Heavier than air flight
 - Landing on the moon
 - Flying faster than the sound barrier
 - A stealth plane
 - A terabyte of storage in a \$200 cigar box
- Lesson from John Houbolt recognized the fundamental significance of LOR and for several years presented the engineering/physics argument to NASA; being thrown out the door and told "His figures lie, he doesn't know what he's talking about."

Motivate

Sir Arthur Clark's Three Laws

- 1. If an elderly but distinguished scientist tells you that something is possible, he is usually correct, but if he tells you it is impossible, he is very probably wrong!
- 2. The only way of testing the limits of the possible is to venture beyond them into the impossible.
- 3. Any sufficiently advanced technology is indistinguishable from magic!

Thorium is something like this but to the researchers who have work this technology, they know the secret is simple – run it in a LIQUID form

What might you need?

- Resources, particularly "long-lead" items
- We envision a reactor and maybe acknowledge the power conversion component
- But to be successful we need a way to:
 - Fill and extract the fluid, store it, filter and process it
 - Lesson Learned: Pay attention to the ground support infrastructure. The speed at which you can service the basic fluid - the key to the whole concept – will be the a determining factor when issues pop up.

Safety Critical Software

- Expensive to produce and more expensive to validate
- Lesson Learned: Do not design the reactor with any safety critical software!
- Corollary have a separate and redundant diagnostic and health monitoring system to have insight into what is happening as the system is operated

Diagnostic Tools

- Data is needed for failure review analysis and to recreate test anomalies
- Lesson Learned: Insist on a hardware lab and active modeling center even when things are going well (i.e., a DSIL or Distributed S/W Integration Lab)
- A LFTR program should maintain active:
 - Full-scale thermal/mechanical working model
 - High-fidelity CFD/neutronic simulation code
 - Diagnostic intense prototype nuclear power plant

Managing Risk

- Start early tackling the hardest issues
- Lesson Learned: Run a pathfinder
 - Boeing Flex Blue Program did data collect on the real world environment of a 747 before modifying it (round the world 6 times in 6 weeks)
- Put money in risk reduction early
 - Corollary is finish risk data before down select or major decision points

More Lessons Learned

- Don't forget the obvious things
 - Personnel, power, cooling, etc...
 - The real world field environment
- Mobility leads to vibration issues
 - Joints leak, valves stick, connectors come loose...
- Diagnostic wiring
 - You must have ample sensors and data collection
 - Video imagery is also very important
- Access to all parts:
 - Need human access to almost everything or specific remote access capabilities
- COTS Vulnerability
 - Cheap and available almost is never suited to the new technology's environment and will likely not have the reliability
 - Be ready to replace them often
 - The "new & improved" model no longer works for your application

Final Lessons Learned

- Start and IRT and plan for them over the long term
- Develop the necessary long-term vendor/technology base
- Higher believers, not mercenaries
- Never let a known defect be deferred because of unfounded fear of creating an issue fixing it
 - Do the engineering right
- Never tolerate an unexplained mystery in any test result – it will eventually show up
- Pray a lot!