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      Overview
● UTK MSR research

● Why dynamic modeling?

● Available Simulink models of
– MSRE, MSBR ORNL-4528

– MSDR full powerplant with 
Rankine BOP

● Safeguards

● Decay heat
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MSR research & student involvement

● Research topics 
● Core modeling: neutronics, fuel cycles

● Safeguards

● Dynamic modeling

● Xenon behavior

● Students
● ~100 undergraduates graduated with some MSR knowledge.

● Graduate students in areas of dynamic modeling, nuclear 
material safeguards, Xenon behavior in MSRs. 

● Most of this work by Vikram Singh, Alex Wheeler, and Visura 
Pathirana. 

● https://msr.ne.utk.edu/~o/UTK_MS_thesis_Singh_final.pdf

https://msr.ne.utk.edu/~o/UTK_MS_thesis_Singh_final.pdf
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Dynamic system modeling

● Simple and adaptable modeling approach that captures 
underlying physics. 

● Ascertain transient behavior during normal operation and 
accident scenarios. Useful for I&C development.

● Determine safety limits and parameter sensitivities.
● Develop a validated open-source tool with accessible 

computational requirements.
● Modern version of ORNL’s MSRE dynamic modeling by 

Syd Ball and Tom Kerlin (ORNL-TM-1070, 1965).
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MSR dynamics models developed

● Molten Salt Reactor Experiment
● Modified PKE for core; PHX; radiator. 

● Validated with MSRE data.

● Molten Salt Breeder Reactor
● Two-fluid modular MSBR, 1000MWe/4

● ORNL-4528, 1970

● Molten Salt Demonstration Reactor
● Single fluid MSDR, 350MWe 

● ORNL-TM-3832, 1972
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MSRE modeling approach

● Methodology inspired by 
earlier work at ORNL*

● Lumped-parameter model
● Modified point kinetics
● Two liquid lumps for every 

solid lump
● Model developed in 

MATLABT-Simulink
● Core: 1-region and 9-region

● 9-region distributes 
temperature feedbacks and 
power production spatially using 
importance-weighted factors.

*T. W. Kerlin, et al. “Theoretical Dynamics Analysis of the Molten-Salt Reactor Experiment,” Nuclear Technology, 10, 118-132, (1970).
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MSRE model results

● System power response to +10 pcm reactivity insertion 
at 1, 5, and 8 MWth power. 

● 9-region model better resolves initial power rise. 

U-235, +10 pcm U-233, +10 pcm
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Frequency characteristics

● Both core models describe the measured data equally 
well.

● Note lack of error bars on data.  
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MSRE data shortcomings

● Reactivity insertion data at full power cannot be 
reconciled with the model.

● Note the lack of error bars in the data. 

+19.6 pcm @ 5MW +24.8 pcm @ 8MW
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Fractional power Average core 
temperature

 Modeling operational anomalies

● Loss of flow in both primary loop.

● Starts at full nominal power (8MWth), no corrective 
action (control rods, salt heaters, etc.).

● No decay heat in this model. 
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Two-fluid Molten Salt Breeder Reactor

● ORNL-4528

● 4 reactor modules
556 MWTh each, 
powering one 
1000MWe turbine.

● Modeled up to 
boiler and reheater.

● 7LiF-BeF2-UF4 fuel salt, 
7LiF-BeF2-UF4blanket 
salt in separate flow 
channels.

● Thorium breeder, 
LFTR
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Lumped-parameter representation of MSBR
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Response to +10 pcm step reactivity

● Stable behavior, the higher 
operational power the faster 
damped by feedbacks.

● Fuel and moderator 
temperature rise. 

FUEL

GRAPHITE

POWER

Feedback   -10pcm



15

MSBR frequency characteristics
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Load-following via reactivity feedback

● Demand driven core power with no other action. 

● MSRs – low pressure, constant flow rate.

Full power to 50% 
and back to full,
1% per minute

● Change in power 
corresponds to 
change of 
temperature 
difference across 
the core and the 
heat exchangers. 
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Load-following via reactivity feedback II

● Rapid load 
changes 
maneuvers 
appear safe.

● Limited by 
cold leg 
temperature 
at very large 
power rises.

● Likely much 
faster than 
feasible by 
the balance 
of the plant.
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Full power plant modeling: MSDR, ORNL-TM-3832

● 750 MWth/350 MWe reactor fueled with LiF-BeF2-ThF4-UF4

● Semi-commercial test-bed reactor, bridge to MSR breeders
● 3 primary loops, each with a secondary and tertiary loop
● Hitec (KNO3-NaNO2-NaNO3) salt loop to capture tritium
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Lumped parameter model 

Neutronics Secondary loop Primary loop Tertiary loop Steam

Reheated regenerative 
Rankine cycle balance 
of the plant

OTSG
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Full-plant frequency response

● Rankine BOP is complex. Does frequency behavior 
depend on its details?

● Steam generator matters, BOP does not. 
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MSBR demand load following

Power: core 
and demand 

Temperatures:
core in and out

Concentrations of 
Xe-135 and I-135

Reactivity 
feedback

Levels of OTSG
regions

Steam temperature
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Sensitivity analysis

● MSR models have hundreds of parameters, many 
evolve with fuel depletion.

● Measuring these is expensive and time consuming

● Parameter sensitivity → research priorities. 
● Sensitivity analysis is a mathematical technique to determine 

how input changes affect output.

● One-at-a-time approach used (other techniques exist).

● Behavior can be explored in time and frequency domains.

● Inform design and maintenance decisions.

● Help establish safety margins.
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Time domain sensitivity

● Select parameters perturbed by -15% to +15%

● Response to +20pcm reactivity insertion is shown. 
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Frequency domain sensitivity

● Change in amplitude for +20% change in parameters.

● MSDR power 
response change
is sensitive at 
different 
frequencies. 

● Characteristic 
features present an 
opportunity to 
determine changes 
in reactor 
parameters by 
measuring power 
response.
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Safeguards: Detecting Plutonium Diversion

● International Safeguards are required for global 
deployment of any reactor design.
● IAEA significant quantity (SQ) of Plutonium: 8kg.

● MSRs have no agreed upon method for safeguarding.

● Traditional item counting does not apply for MSRs.

● In a loss of the continuum of knowledge, there needs to 
be a means of material accountancy in the fuel salt. 

● Liquid (mixed) fuel: unique opportunity for new ideas.
● Fuel sampling. Time capsules of fuel depletion history.

● Liquid fuel level measurements. 

● Characteristic changes in frequency response. 

● Can frequency analysis detect 1SQ diversion of Pu?
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Response to 50 pcm step insertion 

● Removal of plutonium changes delayed neutron fraction. 

● Time response to reactivity insertion after 1 SQ removal  
is hard to resolve even for small reactors 

% Pu removed
~100%
~15%
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1SQ out: Frequency characteristics and its change

Change in gain Change in phase 

Gain Phase 
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Decay heat production and removal

● Removal: generic decay heat removal system (DHRS)
● Logistic curve: 

– Parasitic and max heat removal, time to half power, start time.

● Scope out functional requirements for a real DHRS.

● Dynamic decay heat production
● rate of change = rate of production - rate of decay

● Example (next slide) of an off-normal transient:
● Heat sink is blocked

● Rods drop inserting 1000 pcm of negative reactivity

● DHRS opens

●

Pd
dt

= ∑
i=1

i=N
dn
dt

δ γ i−λi Pd (t)

PDHRS(t) =
Pmax−Pmin

1+exp[(1−
t−t 0
tDHRS

)+ ln (1 /ϵ−1)]
+ Pmin
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BOP trip, rod drop, DHRS action
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Conclusions

● MSRs: tremendous progress in the last 10 years!

● Dynamic modeling characterizes system behavior in time.
● Useful for instrumentation and control.

● Accident scenarios, parameter sensitivity to guide research.

● Novel methods of safeguards. 

● Functional requirements for a decay heat removal system. 

● Well designed MSRs are stable and can rapidly follow 
demand load. 
● Low pressure system with constant flow rates. 

● Thank you for your attention. Questions?
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