Presented at the

Thorium Energy Alliance Conference

Chicago IL

2013 May 30 and 31

By

Ralph S. Hart

Engineering Manager

Northern Nuclear Industries Incorporated

LEADIR-PS is an acronym for:

LEAD-cooled Integral Reactor - Passively Safe.

Something Old: Graphite moderator, TRISO fuel and Lead coolant, all with significant reactor operating experience.

Something New: the novel combination of proven elements in an advanced thermal reactor.

LEADIR-PS100 has an output of 100 MW_{th}

- Initial market focus is the Canadian Arctic and Western Canadian Oil sands.
- The small LEADIR-PS100s, while meeting market demands, will serve as demonstration pants.
- The creep, crawl, walk, run approach is adopted.
- Future LEADIR-PS reactors may have larger capacity, higher temperature capability, operate on a Thorium fuel cycle.

Something Old – Something New LEADIR-PS Design Requirements

Comprehensive design requirements focused on safety, economics and minimizing development were defined which resulted in high level requirements including:

- 1. Production on a modern assembly line.
- Capable of remote unattended operation, with 3000MW_{th} minimum operated from a central facility.
- 3. Have maintenance and refuelling services provided by specialized crews deployed from central locations.
- 4. Have security and surveillance provided by existing or modestly enhanced organizations.
- 5. Facilitate siting within conventional facilities in populated areas (below large parking garages, etc.).

Something Old – Something New

Why LEADIR-PS?

- An integral pool reactor employing a high boiling point coolant is necessary to meet the design requirements.
- Extensive studies of most prior reactors including the HTGR, the MSRE, and Hallam were completed.
- MSRs can potentially meet requirements but they have challenges requiring extensive development.
- The integration of Hallam and HTGR technologies utilizing ²⁰⁸Pb coolant offers a viable **near term** energy solution requiring minimal development.

Coolant Selection

- Acceptable coolants identified are molten salt, lead (²⁰⁸Pb), and ²⁰⁸Pb-bismuth eutectic with melting points of 354 °C, 327 °C and 125 °C respectively.
- Bismuth is corrosive and yields Polonium, a neutron and alpha emitter, when in a high neutron flux.
- Bismuth, ²⁰⁸Pb and molten salt have acceptably low thermal neutron capture cross-sections.
- ²⁰⁸Pb does not react with water, graphite or air.
- 208 Dh avoids a requirement for an intermediate circuit

Something Old – Something New

LEAD Coolant

- Lead utilized in Russian Fast Breeders and Lead-Bismuth in Russian Alfa Class submarine reactors.
- ²⁰⁸Pb has a very high boiling point (1750 °C).
- ²⁰⁸Pb has excellent thermo-hydraulic characteristics, including high heat capacity.
- Lead is plentiful and low cost.
- Prior to use in LEADIR-PS100,
 - The lead is purified
 - The ²⁰⁸Pb isotope is separated, and
 - The ²⁰⁸Pb is conditioned to LEADIR-PS requirements

Graphite Moderator

- Has a long history in reactor operation (MAGNOX, AGR, HTGR, RBMK, more).
- Has a strong negative reactivity temperature coefficient.
- Is an excellent and efficient moderator.
- Has a very high temperature capability.
- Has a high Heat Capacity.
- No reaction with ²⁰⁸Pb at high temperature.

TRISO Fuel

 Dragon Project technology advanced by Germany and US.

- Main benefit is the retention of fission gas and radionuclides within the Silicon Carbide layer.
- Maintains containment integrity to above 1600 °C
- Currently produced by Japan and China.

Something Old – Something New

Reference Core

- Prismatic: Fuel blocks contain TRISO Fuel and Coolant passages.
- Axial and radial Graphite reflector blocks.

- Fuel and reflector blocks are buoyant in ²⁰⁸Pb.
- Pebble Bed core has advantages for large LEADIR-PS reactors.

Something Old – Something New

LEADIR-PS100
Reactor
Configuration

Core Inlet - 360 °C Core Outlet - 560 °C

Something Old – Something New

Reactor Control and Shutdown

- Control rods & Shutdown Rods operate in the reflector.
- Control rod assemblies are driven in and out (electric stepping motors).
- Shutdown rods (SDRs) drop by gravity with initial spring assist (CANDU concept).
- Safety system initiation of SDRs is backed up by a passive initiation system.
- Shutdown via negative temperature reactivity coefficient as a last resort.

Something Old – Something New

Safety Overview

- Lead Coolant: high temperature capability and no chemical reaction with graphite, water or air.
- **Graphite Moderator:** provides inherent shutdown capability and structural capability at high temperature.
- TRISO Fuel: Radionuclide retention at high temperature.
- Integral Pool Configuration: Avoids concerns over high energy pressure vessel/pipe rupture, simple, and relatively low cost.

Safety Overview Continued

- Passive Shutdown System: SDRs drop by gravity, passive backup initiation.
- Assurance of core submergence: The core remains submerged in lead even if both the primary and secondary reactor vessels fail.
- Passive decay heat removal: Assured for all credible events for an indefinite period of time.

Challenges

- Technical challenges can be met with reasonable effort and sound engineering.
- The difficult challenge is the Regulatory. Unless Regulatory bodies recognize and credit the features unique to small reactors such as LEADIR-PS100, commercialization will not be realized by any small reactor.
- Hence there must be a focus on communication with the Regulatory agencies (CNSC in Canada).

Summary

LEADIR-PS100 meets safety and economic design requirements and provides a near term nuclear solution to target market energy demands.

Something Old – Something New

Meeting tomorrow's energy needs.

Thank You

