Nuclear Energy: Should DoD Lead or Follow?

Thorium Energy Alliance Conference 19 October 2009

COL Paul E. Roege, P.E. Army Capabilities Integration Center Fort Monroe, VA paul.roege@us.army.mil 757.788.2859

We need energy to win the fight

How can we sustain the force in the face of uncertain oil supply and asymmetric threats?

Nuclear energy is a compact, sustainable energy source that could dramatically improve US military sustainability.

It is the only currently available technology that could displace a significant amount of oilderived fuels in the field.

Fuel Consumption Per Soldier Over Time

Combat Logistics

- Extended supply lines, intermodal transfer are complex & vulnerable
- Liquids displace spare parts and ordnance
- Transportation costs can be prohibitive
- Storage and distribution challenges
- Local sources can be inconsistent

US Army Battlefield Supply Volume

Logistics, supply costs, and other considerations

- Delivering fuel is costly in \$s, infrastructure, and lives
- Fuel delivery costs
 - Large multipliers
 - · It takes (a lot of) fuel to deliver fuel
 - · Difficult to quantify
 - Air-to-Air: \$20-25/gal
 - Some of this is fixed (not scaled by gallons) by prepositioned tankers around the globe
 - Assumes 40-year life for KC-135s
 - Army theater: \$100-600/gal
 - Large cost range depends on "front line" to "back line" separation in distance, terrain, defense, etc.

* Infrastructure costs

- A large fraction of infrastructure costs and vulnerabilities scale with fuel volume that must be delivered
- Cost in lives
 - Changes in military doctrine
 - Present logistic supply designed at a time when "behind the front lines" denoted more-or-less safe terrain

- JASON estimated cost/gal delivered in the air
 - In 2005, 6.5% (165 Mgal) of USAF use
 - Gallons delivered also include non-USAF gallons
 - O&M costs dominate
 - 1999 O&M costs back-calculated to match DSB2001 estimate
 - JASON estimate adds acquisition cost/gal

A few statistics

- 4th ID used 50,000 gallons/day of fuel in Iraq (7 times use in CONUS):
 - □ 20% for electric generation [~ 6 MW(e)]
 - 80% for ground and air vehicles
 - ~ 6 gallons per soldier per day (assuming 8000 troops)
- At \$100 per gallon estimated cost on the ground this equates to:
 - \$30 million/month for fuel for electric generation
 - \$120 million/month for fuel for vehicles

"Tooth to Tail"

- Security forces diverted to secure convoys
- Combat activities limited by logistics capacity
- Support personnel required to transport, handle materials
- Contractor personnel and facilities required to support fuel and other logistics

Why Nuclear?

- High energy density
- Fuel is self-contained
- Supports "more electric" force
- Low signature
- No "greenhouse" emissions
- Robust, domestic fuel source
- Proven technologies
- Leveraging opportunities
 - DOE and industry nuclear energy initiatives
 - Military systems could be available for domestic emergencies

Why not nuclear?

- Public opinion
- Proliferation concerns
- Investment challenges
- Safety concerns
- Need for simplicity
- Environmental concerns
- Treaties & politics
- Sheer complexity of the question

Theater Energy Alternatives

Energy alternatives to produce 50 MW of power in theater

- 3600 gal/hr diesel fuel
- 5 million sq ft of solar array
- 35t/hr biomass (switchgrass)
- 50 t nuclear reactor

Energy Source/Storage	Energy density (MJ/kg)
Mass-energy equivalence (E=mc2)	89,876,000,000
Enriched uranium (3.5% U235)	3,456,000
Diesel fuel	46.2
Household waste	8.8-11
Chemical propellants/explosives	6.5-8.5
Lithium ion battery	0.54–0.72

Nuclear Energy Comes in Many Flavors

- Size wide range
 - Radio-Thermal Generators used in deep space
 - Submarine/ship propulsion
 - 1000MW power reactors
- Coolant/moderator
 - Water
 - Graphite
 - Sodium
 - Helium
- Fuel
 - Pins/plates/balls
 - Uranium/plutonium
 - Metallic/ceramic

Prospective Nuclear Application Remote Package Systems

- Small, self-contained systems for
 - remote sites
 - unmanned platforms
- Critical requirements
 - Extended endurance
 - High reliability
 - Rugged & proliferation resistant
 - Simple & safe to operate
- RTG systems already used on space missions

Prospective Nuclear Application Transportable Power Generation

- Modular systems which can be deployed for contingency or emergency operations
 - War zone
 - Reconstruction
 - Natural disaster relief
- Critical Requirements
 - Limited resupply
 - Air transportable
 - Rugged & proliferation resistant
 - Simple & safe to operate
- US Army Corps of Engineers operated a series of prototypes during the 1950s and 60s.

US Army ML-1 Reactor, 1962

Prospective Nuclear Application

Installation Power

- Base load or backup power systems which assure power continue mission
 - Natural disaster
 - Terrorist attack
 - Fuel disruption
- Critical Requirements
 - Reliable operation
 - Assured fuel supply
 - Resistant to natural disaster or attack
 - Economical & safe to operate
- Commercial nuclear plants currently provide safe, reliable power worldwide

Current DoD Efforts in Nuclear Energy

Navy

- Ongoing use of power for carriers & subs
- Considering adaptation to power next generation cruiser

Air Force

 Considered commercial plant to be sited on Air Force Base for reduced vulnerability (2008/2009)

Army

 RDECOM/USMA studies of transportable reactor concepts for power, water, synfuel production

Technology Opportunities

- Small/modular nuclear reactors
 - First generation military reactors
 - Next Generation reactor concepts being pursued
 - Toshiba 4S concept being marketed
 - Several transportable concepts currently proposed
- Process Integration
 - Water production
 - Synthetic Hydrocarbon
 - Fischer Tropsch process improvement
 - Catalytic conversion
 - Hydrogen, carbon collection
 - Gasification of coal, waste, other organics
 - Extraction from seawater
 - Extraction from air

Energy Web and Power Storage

Prospective Long-Term Path

- Analyze requirements, alternative concepts
- Build demonstration/testbed reactor(s)
- Expand deployment on domestic bases
- Diversify integration with other technologies (hybrid designs)
- Develop deployable reactors for military/contingency use
- Spin out safety and security improvements for global use.

Questions?

Backup Slides

Range of Power Applications

Future Force Warrior

Some U.S. production sites vs. DoD consumption

(2005) DoD consumption needs could be met by (2005) production capacity of a few U.S. production regions/sites

Nuclear Generation, 1973 - 2004

Growth of nuclear power generation (Monthly Energy Review, EIA/DOE).

How to Consider the Nuclear Option

- Conduct defense-wide assessment
 - Military requirements
 - Design/performance criteria
 - Issues/limitations
- Identify promising design concepts
- Construct technology roadmap
 - Key technologies
 - Research and development needs
- Develop program plan
 - Investment approach
 - Key decisions
 - Risk management strategy

