Virginia Accelerator Driven Systems (ADS) R&D Center

Ganapati Myneni

Virginia ADS Consortium
International Symposium On Hydrogen In Matter
(ISOHIM)

TEA7, San Francisco

June 4, '15

Outline

USA Atoms for Peace Announcement 1953, D. D. Eisenhower – IAEA

India's 3 stage nuclear energy program 1954 – Homi Bhabha

ADS world wide Project plans

Summary

Three-Stage Indian Nuclear Programme

Brief Early History of ADS

- 1950 U. E. O. Lawrence, High power accelerators for producing fissile materials
- 1952 W. B. Lewis, proposed use of thorium with intense neutron generator
- 1992 V. Bowman, Energy generation with ATW
- 1993 C. Rubbia, Energy amplifier

Thorium – non proliferation, no melt down, safe and least NRC involvement

Charlie Bowman's Neutron Cost Estimates

GEM*STAR

Paradigm Shift

Vogalar, VT

India's Thorium Utilization Scheme

Dr. S. Banerjee, University of Virginia Presentation, May

World's 1st ADS Project

MYRRHA - Accelerator Driven System

K. Furukawa's AMSB

Accelerator-Driven subcritical fission in A Molten salt core: Closing the Nuclear Fuel Cycle for Green Nuclear Energy

Peter McIntyre, Texas A&M University
For the ADAM Collaboration

Potential VNEFRC location adjacent to JLab

Neutron/gamma source for isotope developments

Neutrons – emitted in all directions: approximately isotropically

A 100 kW, 100 MeV electron linac is capable of producing 100% of the U.S. demand for many high-priority research isotopes for medical, industrial and other kinds of research. Such a device could also produce nearly 10% of the entire U.S. demand for ⁹⁹Mo.

Schematic of the VNEFRC 100 MeV, 100 kW system

JLab Thermionic Gun

JLab's 100 MeV CW SRF Linac

ADS&ThU International Workshops

1st International ADS&ThU Workshop 2010

 http://www.phys.vt.edu/~kimballton/gem-star/works hop/index.shtml

2nd International ADS&ThU Workshop 2011

http://www.ivsnet.org/ADS/ADS2011/

3rd International ADS&ThU – Oct 14-17, 2014

http://adsthu.org/index.html

ThorConPower DMSR

Goal: cheap, dependable, carbon-free electricity. Now.

- Producable. Must be cheaper than coal. Must be scalable to large volume manufacturing.
- Fixable. Major failures have modest impact on plant output.
- Full scale prototype within four years.

Summary

 Closed fuel cycle reactors and ADS ThU systems require at least another 25 years for maturity

 Molten Salt Reactors can be built now to provide carbon free-economic generation of heat and/or electricity for the health and prosperity of the humanity that are eagerly looking to those of us already enjoying

Acknowledgements

Virginia ADS Consortium Institutions, VNECA and VEC

for their encouragement and help

International Symposium On Hydrogen In Matter (ISOHIM) Publications

Hydrogen in Materials and Vacuum Systems AIP CP 671

http://www.virtualjournals.org/dbt/dbt.jsp?KEY=APCPCS&Volume=671&Issue=1

Hydrogen in Matter AIP CP 837

http://www.virtualjournals.org/dbt/dbt.jsp?KEY=APCPCS&Volume=837&Issue=1

Single Crystal Large Grain Niobium AIP CP 927

http://www.virtualjournals.org/dbt/dbt.jsp?KEY=APCPCS&Volume=927&Issue=1

Superconducting Science and Technology of Ingot Niobium AIP CP 1352

http://scitation.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1352&Issue=1