Molten-Salt Reactors (Thorium Optional)

- MSRs automatically throttle via thermal expansion of salt...
 - As thermal load changes, fission rate tracks salt density.
 - No runaway or 'meltdown' -- salts are radiation stable, gravity removes melt from core.
- MSRs have higher temp & power density so ~30% better thermal efficiency
 - ~1000°C unpressurized temp range from solid to vapor water only has 100°C range.
 - **De-commissioned LWRs** can become ~3x more potent MSRs.
 - Gas (Brayton) or steam-turbine cycles possible no water needed for cooling.
- MSRs can consume existing LWR Actinide wastes...
 - DMSR can use mixed fertile/fissile/transuranic salt (fluorides/chlorides).
 - Reduction of wastes onsite, down to whatever low level is desired no 'spent' fuel.
 - Typical wastes from a 1GWe ThMSR, over 30 years, is under 100lbs (<1 cubic foot)..
 - A 1GWe ThMSR makes 1/1000 the Plutonium of an LWR -- DMSR can consume that.
- MSRs run unpressurized, -- no explosive potential, natural evolution of fission gasses...
 - MSRs have no expensive control/containment or emergency systems.
 - MSR cost <\$3/Watt (far less than current ²³⁵U LWRs) less than coal.
 - Scalable from 1MWe to multiple GWe siting anywhere on Earth or in space.
 - Natural, gravity shutdown upon abnormal behavior 'walk=away safe'.
 - Initial working MSR was for the 1960s DoD Atomic Plane had to be small & safe.
- •Thorium salt (ThF4) may be used to breed fissile MSR fuel (²³³U) internally...
 - Thorium is far more common & cheaper than Uranium.
 - No 'enrichment' \$ or energy wasted 232Th is just a metal common in "rare-earth" ores.
 - All Thorium is consumed no 'spent' fuel (>90% of BWR/PWR Uranium goes unused).
- Thorium-Fluoride MSR = LFTR...
 - Exceedingly stable inexpensive salt, of **no weapons value**.
 - No refuelling shutdowns needed, no excess fuel in core proliferation resistant.
 - ²³²Th is neutron-bred in core to ²³³Uranium within the molten salt **no external fissiles after startup**.
 - ²³³U fissions better than higher U isotopes & Pu, so far less waste.
 - $-^{233}$ U bred from Th is accompanied by **isotopes that discourage weaponization**.