Fluoride Salt-cooled High Temperature Reactors – Technology Status and Development Strategy

Presented to ICENES-2011 San Francisco, CA May 19, 2011

By Sherrell Greene

Director, Research Reactors Development Programs Oak Ridge National Laboratory greenesr@ornl.gov, 865.574.0626

- Fluoride salt
- Fluoride Salt-Cooled High Temperature Reactors (FHRs)
- FHR Technology Suite
- FHR Development Challenges
- FHR Development Strategy

• Fluoride salt

3 Managed by UT-Battelle

for the U.S. Department of Energy

What the heck is "fluoride salt" ?

Liquid and "Frozen" 2LiF-BeF₂ salt

- "Fluoride salt" is a "halide salt"
- Halide salts are ionic compounds formed from the combination of a halogen and another element – commonly, but not exclusively, alkali metals or alkaline earths
- Examples: LiF, BeF₂, KF, NaF, ZrF₄, RbF, and mixtures of same

18 VIIIA

4.0026

Helium

20,180

18 3

ARG

Κ

KRYP

54

86

(222)

Rn

RADON

36 8

18.998

FLUORINE

CHLORINE

35 79.904

Br

BROMINE

53 126.90

IODINE

85 (210)

At

60

09)

065 17 35.453

The potential benefits and challenges of FHRs stem from fundamental coolant properties

Coolant	Tmelt (°C)	Tboil (°C)	Density (kg/m³)	Specific Heat (kJ/kg ºC)	Volumetric Heat Capacity (kJ/m ³⁰ C	Thermal Conductivity (W/m ºC)	Kinematic Viscosity (m²/s) * 10 ⁶
Li ₂ BeF ₄ (Flibe)	459	1430	1940	2.42	4670	1.0	2.9
59.5NaF-40.5ZrF ₄	500	1290	3140	1.17	3670	0.49	2.6
26LiF-37NaF-37ZrF ₄	436		2790	1.25	3500	0.53	
31LiF-31NaF-38BeF ₂	315	1400	2000	2.04	4080	1.0	2.5
8NaF-92NaBF ₄	385	700	1750	1.51	2640	0.5	0.5
Sodium	97.8	883	820	1.27	1040	62	0.12
56Na-44K	19	826	759	1.04	789	28.4	0.25
22Na-78K	-11	784	742	0.87	646	26.8	0.24
Lead	328	1750	10540	0.16	1686	16	0.13
44.5Pb-55.5Bi	98	881	10020	0.15	1503	13.9	0.12
Helium, 7.5 MPa			3.8	5.2	20	0.29	11
Water, 7.5 MPa	0	290	732	5.5	4040	0.56	0.13

5 Managed by UT-Battelle

for the U.S. Department of Energy

Potential FHR operating temperatures match many important process heat applications

S. R. Greene, 19 May 11

- Fluoride salt
- Fluoride Salt-Cooled High Temperature Reactors (FHRs)

FHRs combine the best attributes of other reactor types to provide unique performance benefits

S. R. Greene. 19 May 11

FHRs are promising candidates for traditional and non-traditional applications

- Electricity production
 - Large centralized
 - Small remote site

- High and Very High-Temperature Process Heat production
 - Large centralized
 - Small remote site

- Incremental energy demand growth scenarios
- Compact power applications

FHR concepts are being developed for diverse applications

* AHTR = Advanced High Temperature Reactor PB-AHTR = Pebble Bed Advanced High Temperature Reactor SmAHTR = Small Modular Advanced High Temperature Reactor

CAK

Jational Laboratory

FHRs can be attractive Small Modular Reactors (SMRs)

for the U.S. Department of Energy

S. R. Greene, 19 May 11

B&W mPower

FHRs incorporate many attractive attributes

Coolant (Reactor Concept)	High Working Temp ^a	High Volumetric Heat Capacity ^b	Low Primary Pressure ^C	Low Reactivity With Air & Water ^d	Coolant & Materials Cost
Water (PWR)	$\overline{\mathbf{S}}$		$\overline{\mathbf{i}}$		\odot
Sodium (SFR)	\bigcirc	\bigcirc		$\overline{\boldsymbol{\otimes}}$	
Helium (GCR)		$\overline{\mathbf{c}}$	$\overline{\mathbf{i}}$		
Salt (AHTR)	\odot	\odot			$\overline{\mathfrak{S}}$

^a High system working temperature desirable for high efficiency power conversion and process heat applications

^{**b**} High coolant volumetric heat capacity enables ~constant temperature heat addition / removal ($\eta_c = 1 - T_c/T_H \sim$ Carnot cycles), compact system architectures, and reduces pumping power requirements

^c Low primary system pressure reduces cost of primary vessel and piping, and reduces energetics of pipe break accidents

^d Low reactivity with air and water reduces energetics of pipe break accidents

- Fluoride salt
- Fluoride Salt-Cooled High Temperature Reactors (FHRs)
- FHR Technology Suite
- FHR Development Challenges
- FHR Development Strategy

FHR critical technology maturity varies

- Fluoride salt
- Fluoride Salt-Cooled High Temperature Reactors (FHRs)
- FHR Technology Suite
- FHR Development Challenges
- FHR Development Strategy

Reactor subsystem technology development focuses on materials

- Fluoride salt LiF-BeF₂ is coolant of choice
 - Requires 99.993% ⁷Li enrichment to maintain negative void coefficient and avoid unacceptable tritium production in reactor coolant
 - Has Be occupational health concerns
 - Expensive
- Fuel NGNP / AGR TRISO fuel
 - Solid and annular pellets, plates, or pebbles are possible
- Core Structures
 - C-C and SiC-SiC composites
- Control Rods
 - C-C guides
 - Boron carbide or molybdenum hafnium carbide
- Reflector Nuclear grade graphite
- Core Barrel C-C composite
- Reactor Vessel Alloy N

Li / Be / F compounds are very good (but expensive) coolants from nuclear perspective

Salt Constituent	Moderating Ratio	Short-lived Activation	Long-lived Activation
Lithium-7	Good	Very Good	Very Good
Beryllium	Very Good	Very Good	Good
Fluorine	Very Good	Very Good	Very Good
Sodium	Acceptable	Acceptable	Good
Potassium	Poor	Acceptable	Poor
Rubidium	Acceptable	Poor	Good
Zirconium	Good	Poor	Acceptable

- All fluoride salts are good coolants
- Lighter (low-Z) salts
 - Better heat transfer and nuclear performance
 - Have larger moderating ratios, yielding more negative (better) coolant void coefficients (FLiBe is best)

- Heavy (high-Z) salts
 - Lower heat capacities and thermal conductivities
 - More activation and transmutation products

Reference: D. F. Williams, et al., Assessment of Candidate Molten Salt Coolants for the Advanced high-Temperature Reactor, ORNL/TM-2006-12, March 2006

Salt optimization (value engineering) for heat transport and storage applications is needed

Decay Heat Removal Subsystem	Salt	Formula Weight (g/mole)	Melting Point (°C)	900 °C Vapor Pressure (mm Hg)	P Density (g/cm³)	PC _p Volumetric Heat Capacity (cal/cm ^{3-o} C)	μ Viscosity (cP)	k Thermal Conductivity (W/m-K)
	LiF-NaF-KF	41.3	454	~0.7	2.02	0.91	2.9	0.92
Heat Transport Subsystem	NaF-ZrF ₄	92.7	500	5	3.14	0.88	5.1	0.49
	KF-ZrF4	103.9	390	1.2	2.80	0.70	<5.1	0.45
	LiF-NaF-ZrF ₄	84.2	436	~5	2.92	0.86	6.9	0.53
	LiCI-KCI	55.5	355	5.8	1.52	0.435	1.15	0.42
Energy Storage Subsystem	LiCl-RbCl	75.4	313	-	1.88	0.40	1.30	0.36
	NaCl-MgCl ₂	73.7	445	<2.5	1.68	0.44	1.36	0.59
	KCI-MgCl2	81.4	426	<2.0	1.66	0.46	1.40	0.40
	NaF-NaBF4	104.4	385	.9500	1.75	0.63	0.90	0.40
	-KF-KBF ₄	109.0	460	100	1.70	0.53	0.90	0.38
	-RbF-RbF4		442	<100	2.21	0.48	0.90	0.28

Very little R&D to optimize fluoride salt properties and salt production processes has been conducted since 1960's

18 Managed by UT-Battelle for the U.S. Department of Energy Reference: D. F. Williams, Assessment of Candidate Molten Salt Coolants for the NGNP/NHI Heat-Transfer Loop, ORNL/TM-2006/69, June 2006

Heat exchangers and vortex diodes are principal passive decay heat removal subsystem technology development needs

S. R. Greene, 19 May 11

Heat exchangers, pumps, and valves are primary heat transport subsystem technology development challenges

Heat Transport Subsystem
— Working Salt
Salt-to-Salt Heat Exchanger
— Piping
— Trace Heaters
– Pumps
– Valves
— I & C
Salt-to-Gas OR Salt-to-Salt Heat Exchanger

for the U.S. Department of Energy

Pumps

- Long-shafted centrifugal pumps
- Ceramic bearings and dry gas seals
- Ti-modified Alloy N material
- Piping
 - Alloy N for temperatures < 700 °C</p>
 - C-C composites for higher temperatures
- Valves
 - No experience base for active valving
 - "Freeze plugs" used in MSRE
 - Salt-compatible valve seats and seals
- Trace Heaters & Insulation
 - No major challenges

Optimal Brayton power conversion technology is not obvious...

- Closed-cycle Brayton:
 - He: High-temp capability, bulky, complicated
 - Super-critical CO_{2:}, compact, temp-limited
- Open direct-cycle air
 - Very high temperature capability, simple
- Supercritical steam Rankine is mature

Heat rejection subsystem technology needs are coupled to power conversion technology selection

- Almost no FHR-specific work done to date.
- Coupled to power conversion selection
- "Dry" heat rejection to air should be attractive due to high temperatures
- Hybrid wet/dry systems may be 1st step
- Opportunity to leverage concentrating solar power plant technologies?

Feasibility of FHR thermal energy storage system hinges on cost of salt

²³ Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 19 May 11

- Fluoride salt
- Fluoride Salt-Cooled Very High Temperature Reactors (FHRs)
- FHR Technology Suite
- FHR Development Challenges
- FHR Development Strategy

Near-term technical feasibility of FHRs is dominated by four considerations

- "Cost" of salt coolants (especially LiF-BeF₂) and heat-transport working salts
 - Li-7 isotopic purity is major cost driver
 - Be ES&H considerations
 - Bulk heat transport/storage compounds
- Tritium management technology for systems employing Li-based reactor coolants
- Alloy N code qualification (in-vessel) and supply chain
- Heat exchanger and radiator technology
 - High temperature
 - Salt-to-salt, salt-to-gas, salt-to-air
 - Feasibility of high pressure differential designs

An integrated FHR development strategy would focus on

- System concept development
- Base technology development
 - Optimized salts
 - Salt cleanup and tritium management
 - TRISO fuels (leverage on-going gas reactor fuels work)
 - High-temperature materials (especially advanced composites)
- Component development
 - Heat exchangers (salt-to-salt, salt-to-gas)
 - Pumps
 - Valves
 - Fluidic diodes
- High temperature power conversion technology
- Infrastructure
 - Salt synthesis laboratories
 - Electrically heated loops for materials, component, power conversion, and heat rejection technology development
- Small demonstration FHR

Materials R&D will pace evolution to higher operating temperatures

System Element	@ 700 °C	@ 850 °C	@ 1000 °C
Graphite Internals	Toyo Tanso IG110 or 430	Toyo Tanso IG110 or 430	Toyo Tanso IG110 or 430
Reactor Vessel	Alloy N	 Ni-weld overlay on 800H Insulated low-alloy steel New Ni-based alloy 	 Interior-insulated low- alloy steel
Core barrel & other internals	Alloy N	C-C compositeNew Ni-based alloy	•C-C composite•SiC-SiC composite•New refractory metal
Control rods and internal drives	Alloy NC-C compositesNb-1Zr or MHC	•C-C composites •Nb-1Zr •MHC	•C-C composites •Nb-1Zr •MHC
PHX & DRACS	Alloy N	 New Ni-based alloy Double-sided Ni cladding on 617 or 230 	C-C compositeSiC-SiC compositeMonolithic SiC
Secondary (salt- to-gas) HX	Coaxial extruded 800H tubes with Ni-based layer	 New Ni-based alloy Coaxial extruded 800H tubes with Ni-based layer 	?

for the U.S. Department of Energy

Summary

- FHRs are a new class of high- to very-high-temperature reactor that leverages best features of traditional reactors
- FHR designs target :
 - process heat production and electricity generation
 - ease of transport and deployment
 - long-term evolvability to higher efficiency electric generation and higher temperature process heat applications
- A 650°C FHR is a reasonable "pathfinder" objective
- Current technology status benefits from molten salt reactor, gascooled, and liquid metal-cooled reactor technology development over many decades
- Key challenges are salt economics, high-temperature materials, and high-temperature heat exchanger technologies
- Reason for technical optimism
- Promise is significant

