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Small Modular and Molten Salt Reactors
Small Modular Reactors - Main Advantages

How small is small?

Small Modular Reactor (SMR) = Advanced reactor producing up to
300 MWe per module.

SMR advantages
• Load following capability
• Low capital costs
• Passive and inherent safety features

SMRs under development - Almost 50 design concepts, e.g.
• NuScale (60 MWe, Integral PWR, USA)
• Terrestrial Energy (192 MWe Integral MSR, Canada)
• Seaborg Technologies (250 MWe CMSR, Denmark)

=⇒ of those 10 design concepts are Molten Salt Reactors
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Small Modular and Molten Salt Reactors
Molten Salt Reactors - Advantages

Molten Salt Reactors use mainly fluoride or alternatively chloride salts
as primary coolant with either solid or liquid fuel.

Why liquid molten salt fuel?
• Low pressure operation - Less safety concerns, lightweight construction
• Passive and inherent safety features - Fuel draining, strong negative feedback
coefficients
• Potentially low fuel fabrication costs.
• High temperature heat production for industrial applications
• Good load following capabilities
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Small Modular and Molten Salt Reactors
Molten Salt Reactors - Modelling Challenges

Code development and validation for licensing purposes is a challenge:
Tight coupling of neutron kinetics and thermal hydraulics

• Delayed neutron precursor drift modelling: no regulatory compliant software
designed for this
• Turbulence modelling to predict stagnation and recirculation zones
• Safety assessment and risk analysis: Definition of severe accidents for a liquid fuel

This work presents an example of coupled neutronics-thermal
hydraulics approach for modelling of liquid fuel reactors.
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Coupled Neutronics-Thermal Hydraulics Analysis of the MSRE
Scope of work

Approaches to the modelling of liquid fuel relevant phenomena :
• Development of in-house codes coupling neutronics (deterministic
approach) and thermal-hydraulics.
• Utilization of exisiting CFD codes (OpenFOAM, COMSOL) to solve for
determinsitic neutron transport.
• Utilization of exisiting Monte Carlo neutronics software (mainly Serpent)
to couple externally to CFD codes - An example is this work.

Reference case: Molten Salt Reactor Experiment (MSRE)
• Implementing the coupling mechanism for neutronics and thermal hydraulics
(Serpent2.1.30/OpenFOAM1806):
• Standard multiphysics coupling setup for OF and Serpent
• Drift of delayed neutron precursors (an approach developed in this work)

• Steady state analysis
• Transient analysis: step reactivity insertion
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Coupled Neutronics-Thermal Hydraulics Analysis of the MSRE
The MSRE

• Single - fluid, unclad, graphite
- moderated molten salt
reactor.
• Design power of 10 MWth.
• Fuel: Design - LiF - BeF2 -
ZrF4 - ThF4 - UF4.
• Operation: June 1965 -
December 1969
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Coupled Neutronics-Thermal Hydraulics Analysis of the MSRE
MSRE typical graphite stringer

Total fuel flow 75.7 l/s
Average power density 14 kW/l

Fuel inlet T (flow distributor) 908.5 K
Fuel outlet T (core outlet) 933.2 K

Fuel inlet p 1.38 bar
Fuel outlet p 0.48 bar

Table: Main core parameters for 10 MW nominal power
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Coupled Neutronics-Thermal Hydraulics Analysis of the MSRE
Entire core Serpent model

• Uniform temperature - 922 K
• Fresh fuel is considered
• Control rods are Gd oxide - Al oxide cylinders and experimental sample
rod is a pure graphite cylinder.

9 DTU Nutech 23.8.2019



Coupled Neutronics-Thermal Hydraulics Analysis of the MSRE
Entire core Serpent model - Power distribution

Fuel composition vector for keff=1:
LiF(70 mol %)
BeF2 (24.85 mol%)
ZrF4(5 mol%)
UF4(0.15 mol%)
Fissile isotope enrichment: 93%235U
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Coupled Neutronics-Thermal Hydraulics Analysis of the MSRE
Single Channel CFD model

Cylindrical fuel channel: comparison to the ORNL analytical model
(left) and realistic stadium-shaped channel (right).

Constant fuel volume fraction:
γ = Vfuel

Vmoderator+Vfuel
= 0.224
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Coupled Neutronics-Thermal Hydraulics Analysis of the MSRE
Single Channel CFD Mesh

12 DTU Nutech 23.8.2019



Coupled Neutronics-Thermal Hydraulics Analysis of the MSRE
Single Channel Neutronics Model

Neutronics boundary and initial conditions
Fuel temperature 923.5 K

Graphite axial boundaries Vacuum
Graphite radial boundary Reflective

CFD boundary conditions
Fuel inlet velocity 0.183 m/s

Fuel inlet temperature 923.5 K
Fuel/Graphite Interface T Coupled
Graphite top and bottom Zero Gradient

Graphite perimeter Symmetry
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Coupled Neutronics-Thermal Hydraulics Analysis of the MSRE
General Coupling Scheme
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Coupled Neutronics-Thermal Hydraulics Analysis of the MSRE
Treatment of Delayed Neutron Precursors (DNP) - ORNL
model

The DNP drift included in point-kinetics equation:

LΦ + (1− βT )fpPΦ +
6∑

n=1
λifdici = 1

v

∂Φ
∂t

(1)

∂ci

∂t
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∂
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(vci) (2)

ci(z) = αkc
o
i (z) (3)

Procedure
• Calculate static and adjoint axial fluxes
• calculate the DNP concentration co

i (z) for a given inverse period
• Calculate ci(z) according to (3)

See ORNL- TM- 1626 report for detailed explanations.
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Coupled Neutronics-Thermal Hydraulics Analysis of the MSRE
Treatment of DNP - Our Approach and Comparison
Procedure
• Read the DNP position file from Serpent source generation and the OpenFOAM
velocity distribution file
• Extract velocity corresponding to each DNP position
• Calculate average velocity for each axial region (10 in this case)
• Shift the DNPs in each region by corresponding average velocity and write new
DNP position file
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Steady State Results
Steady State Results - Velocities
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Steady State Results
Steady State Results - Axial Temperature Profile

Tg = Tf + ∆T (4)
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Transient Results
Reactivity Insertion Analysis

The MSRE is more stable at
high power levels, whereas it
takes much longer to stabilize
the system at lower power
levels.
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Transient Results
Results of Transient

Step reactivity insertion at nominal power of 8 MW (0.0248 %δ k/k)
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Transient Results
Conclusion & Outlook

Serpent and OpenFoam are coupled in this work and a methodology for
DNP treatment was developed.
• The steady state temperature distributions in fuel and graphite are in good
agreement with the ORNL calculations.
• DNP axial distribution agrees with ORNL model calculations.
• The reactor power response to step reactivity insertion is in good agreement with
the ORNL experimental results.

Future work
• Elaborate the coupling method and DNP treatment
• Scale up the method to a feasible tool for MSR simulation
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