

Coupled Neutronics-Thermal Hydraulics Assessment of Graphite Moderated Molten Salt Reactors

Ashkhen Nalbandyan¹, Esben Bryndt Klinkby¹, Bent Lauritzen¹, Jacob Groth-Jensen², Rowan Steyn²

Center for Nuclear Technologies

¹Nutech, Technical University of Denmark (DTU)

 $^{^2}$ Seaborg Technologies, Copenhagen, Denmark

Outline

- Small Modular and Molten Salt Reactors
- Coupled Neutronics-Thermal Hydraulics Analysis of the MSRE
 - Scope of Work
 - Model Description
 - Serpent2.1.30-OpenFOAMv1806 Coupling Scheme
- Steady State Results
 - Temperature and velocity distribution
- Transient Results
 - Step Reactivity Insertion

DTL

Small Modular Reactors - Main Advantages

How small is small?

Small Modular Reactor (SMR) = Advanced reactor producing up to 300 MWe per module.

SMR advantages

- Load following capability
- Low capital costs
- Passive and inherent safety features

SMRs under development - Almost 50 design concepts, e.g.

- NuScale (60 MWe, Integral PWR, USA)
- Terrestrial Energy (192 MWe Integral MSR, Canada)
- Seaborg Technologies (250 MWe CMSR, Denmark)
- ⇒ of those 10 design concepts are Molten Salt Reactors

DIO

Molten Salt Reactors - Advantages

Molten Salt Reactors use mainly fluoride or alternatively chloride salts as primary coolant with either solid or liquid fuel.

Why liquid molten salt fuel?

- Low pressure operation Less safety concerns, lightweight construction
- Passive and inherent safety features Fuel draining, strong negative feedback coefficients
- Potentially low fuel fabrication costs.
- High temperature heat production for industrial applications
- Good load following capabilities

Molten Salt Reactors - Modelling Challenges

Code development and validation for licensing purposes is a challenge: Tight coupling of neutron kinetics and thermal hydraulics

- Delayed neutron precursor drift modelling: no regulatory compliant software designed for this
- Turbulence modelling to predict stagnation and recirculation zones
- Safety assessment and risk analysis: Definition of severe accidents for a liquid fuel

This work presents an example of coupled neutronics-thermal hydraulics approach for modelling of liquid fuel reactors.

Scope of work

Approaches to the modelling of liquid fuel relevant phenomena :

- Development of in-house codes coupling neutronics (deterministic approach) and thermal-hydraulics.
- Utilization of exisiting CFD codes (OpenFOAM, COMSOL) to solve for determinsitic neutron transport.
- Utilization of exisiting Monte Carlo neutronics software (mainly Serpent) to couple externally to CFD codes - An example is this work.

Reference case: Molten Salt Reactor Experiment (MSRE)

- Implementing the coupling mechanism for neutronics and thermal hydraulics (Serpent2.1.30/OpenFOAM1806):
 - Standard multiphysics coupling setup for OF and Serpent
 - Drift of delayed neutron precursors (an approach developed in this work)
- Steady state analysis
- Transient analysis: step reactivity insertion

DTU

The MSRE

- Single fluid, unclad, graphite - moderated molten salt reactor.
- Design power of 10 MWth.
- Fuel: Design LiF BeF₂ -ZrF₄ - ThF₄ - UF₄.
- Operation: June 1965 -December 1969

MSRE typical graphite stringer

Total fuel flow	75.7 l/s	
Average power density	14 kW/I	
Fuel inlet T (flow distributor)	908.5 K	
Fuel outlet T (core outlet)	933.2 K	
Fuel inlet p	1.38 bar	
Fuel outlet p	0.48 bar	

Table: Main core parameters for 10 MW nominal power 23.8.2019

Entire core Serpent model

Core side view

Core top view: three control rod thimbles and an experimental graphite assembly are in the center

- Uniform temperature 922 K
- Fresh fuel is considered
- Control rods are Gd oxide Al oxide cylinders and experimental sample rod is a pure graphite cylinder.

Entire core Serpent model - Power distribution

Fuel composition vector for k_{eff} =1:

LiF(70 mol %)

 BeF_2 (24.85 mol%)

 $ZrF_4(5 \text{ mol}\%)$

 $UF_4(0.15 \text{ mol}\%)$

Fissile isotope enrichment: 93\%^235U

Single Channel CFD model

Cylindrical fuel channel: comparison to the ORNL analytical model (left) and realistic stadium-shaped channel (right).

Constant fuel volume fraction:

$$\gamma = \frac{V_{fuel}}{V_{moderator} + V_{fuel}} = 0.224$$

Single Channel CFD Mesh

Single Channel Neutronics Model

(b) Stadium-shaped fuel channel

Neutronics boundary and initial conditions

Fuel temperature	923.5 K
Graphite axial boundaries	Vacuum
Graphite radial boundary	Reflective

CFD boundary conditions

Fuel inlet velocity	0.183 m/s
Fuel inlet temperature	923.5 K
Fuel/Graphite Interface T	Coupled
Graphite top and bottom	Zero Gradient
Graphite perimeter	Symmetry
23.8.2019	

DTU

General Coupling Scheme

Treatment of Delayed Neutron Precursors (DNP) - ORNL model

The DNP drift included in point-kinetics equation:

$$L\Phi + (1 - \beta_T)f_p P\Phi + \sum_{n=1}^{6} \lambda_i f_{di} c_i = \frac{1}{v} \frac{\partial \Phi}{\partial t}$$
 (1)

$$\frac{\partial c_i}{\partial t} = \beta_i P \Phi - \lambda_i c_i - \frac{\partial}{\partial z} (vc_i)$$
 (2)

$$c_i(z) = \alpha_k c_i^o(z) \tag{3}$$

Procedure

- Calculate static and adjoint axial fluxes
- \bullet calculate the DNP concentration $c_i^o(z)$ for a given inverse period
- Calculate $c_i(z)$ according to (3)

See ORNL- TM- 1626 report for detailed explanations.

Treatment of DNP - Our Approach and Comparison

Procedure

- Read the DNP position file from Serpent source generation and the OpenFOAM velocity distribution file
- Extract velocity corresponding to each DNP position
- Calculate average velocity for each axial region (10 in this case)
- Shift the DNPs in each region by corresponding average velocity and write new DNP position file

Steady State Results - Velocities

Steady State Results - Axial Temperature Profile

Model	Fuel[K]	Graphite T [K]	ΔT [K]
ORNL	930.7	957	26.3
Cylindrical channel	931.5	955	23.5
Stadium shaped	929	950	21

$$T_g = T_f + \Delta T \tag{4}$$

Reactivity Insertion Analysis

The MSRE is more stable at high power levels, whereas it takes much longer to stabilize the system at lower power levels.

Results of Transient

Step reactivity insertion at nominal power of 8 MW (0.0248 $\%\delta$ k/k)

Conclusion & Outlook

Serpent and OpenFoam are coupled in this work and a methodology for DNP treatment was developed.

- The steady state temperature distributions in fuel and graphite are in good agreement with the ORNL calculations.
- DNP axial distribution agrees with ORNL model calculations.
- The reactor power response to step reactivity insertion is in good agreement with the ORNL experimental results.

Future work

- Elaborate the coupling method and DNP treatment
- Scale up the method to a feasible tool for MSR simulation

THANK YOU FOR YOUR ATTENTION!